generatorsrandom¶
- class pyvale.generatorsrandom.GenBeta(a: float, b: float, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy beta distribution random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
a (float) -- Alpha parameter of the distribution which must be greater than zero
b (float) -- Beta parameter of the distribution which must be greater than zero
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenChiSquare(dofs: float, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy chi square random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
dofs (float) -- Number of degrees of freedom of the distribution must be greater than zero.
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenDirichlet(alpha: float, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy dirichlet random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
alpha (float) -- Alpha parameter of the distribution
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenExponential(scale: float = 1.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy exponential random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
scale (float, optional) -- Scale parameter of the distribution which must be positive, by default 1.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenF(dofs: float, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy F distribution random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
dofs (float) -- Number of degrees of freedom of the distribution must be greater than zero
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenGamma(shape: float, scale: float = 1.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy gamma random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
shape (float) -- Shape parameter of the gamma distribution, must be greater than zero
scale (float, optional) -- Scale parameter of the gamma distribution which must be greater than zero, by default 1.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenLogNormal(std: float = 1.0, mean: float = 0.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy lognormal random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
std (float, optional) -- Standard deviation of the normal distribution to sample, by default 1.0
mean (float, optional) -- Mean of the normal distribution to sample, by default 0.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenNormal(std: float = 1.0, mean: float = 0.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy normal random number generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
std (float, optional) -- Standard deviation of the normal distribution to sample, by default 1.0
mean (float, optional) -- Mean of the normal distribution to sample, by default 0.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenStandardT(dofs: float, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy t distribution random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
dofs (float) -- Number of degrees of freedom of the distribution must be greater than zero.
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenTriangular(left: float = -1.0, mode: float = 0.0, right: float = 1.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy triangular random generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
left (float, optional) -- Left (min) corner of the triangular distribution, by default -1.0
mode (float, optional) -- Central peak of the triangular distribution, by default 0.0
right (float, optional) -- Right (max) corner of the triangular distribution , by default 1.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.GenUniform(low: float = -1.0, high: float = 1.0, seed: int | None = None)[source]¶
Bases:
IGenRandom
Class wrapping the numpy uniform random number generator. Implements the IGeneratorRandom interface to allow for interchangeability with other random number generators.
- Parameters:
low (float, optional) -- Lower bound of the uniform dsitribution., by default -1.0
high (float, optional) -- Upper bound of the uniform distribution, by default 1.0
seed (int | None, optional) -- Optional seed for the random generator to allow for reproducibility and testing, by default None
- class pyvale.generatorsrandom.IGenRandom[source]¶
Bases:
ABC
Interface (abstract base class) for wrapping numpy random number generation to allow probability distribution parameters to be specified in the initialiser whereas the generation of random numbers has a common method that just takes the require shape to return. Allows for easy subsitution of different probability distributions.
- abstractmethod generate(shape: tuple[int, ...]) ndarray [source]¶
Abstract method. Generates an array of random numbers with the shape specified by the input.
- Parameters:
shape (tuple[int,...]) -- Shape of the array of random numbers to be returned.
- Returns:
np.ndarray -- Array of random numbers with shape specified by the input shape.